إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة.
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.3
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
اقسِم كل حد في على وبسّط.
خطوة 2.2.1
اقسِم كل حد في على .
خطوة 2.2.2
بسّط الطرف الأيسر.
خطوة 2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.2.1.2
اقسِم على .
خطوة 2.2.3
بسّط الطرف الأيمن.
خطوة 2.2.3.1
اقسِم على .
خطوة 2.3
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 2.4
بسّط الطرف الأيمن.
خطوة 2.4.1
القيمة الدقيقة لـ هي .
خطوة 2.5
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 2.6
بسّط .
خطوة 2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.6.2
اجمع الكسور.
خطوة 2.6.2.1
اجمع و.
خطوة 2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 2.6.3
بسّط بَسْط الكسر.
خطوة 2.6.3.1
اضرب في .
خطوة 2.6.3.2
اطرح من .
خطوة 2.7
أوجِد فترة .
خطوة 2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.7.4
اقسِم على .
خطوة 2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 2.9
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
بسّط كل حد.
خطوة 4.1.2.1.1
القيمة الدقيقة لـ هي .
خطوة 4.1.2.1.2
اضرب في .
خطوة 4.1.2.2
أضف و.
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
بسّط كل حد.
خطوة 4.2.2.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الرابع.
خطوة 4.2.2.1.2
القيمة الدقيقة لـ هي .
خطوة 4.2.2.1.3
اضرب .
خطوة 4.2.2.1.3.1
اضرب في .
خطوة 4.2.2.1.3.2
اضرب في .
خطوة 4.2.2.2
اطرح من .
خطوة 4.3
اسرِد جميع النقاط.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5