حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة f(x)=(x-1)^2(x-3)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
طبّق خاصية التوزيع.
خطوة 1.1.2.2
طبّق خاصية التوزيع.
خطوة 1.1.2.3
طبّق خاصية التوزيع.
خطوة 1.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1
اضرب في .
خطوة 1.1.3.1.2
انقُل إلى يسار .
خطوة 1.1.3.1.3
أعِد كتابة بالصيغة .
خطوة 1.1.3.1.4
أعِد كتابة بالصيغة .
خطوة 1.1.3.1.5
اضرب في .
خطوة 1.1.3.2
اطرح من .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.4.1
أضف و.
خطوة 1.1.5.4.2
اضرب في .
خطوة 1.1.5.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.5.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.9
اضرب في .
خطوة 1.1.5.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.11
أضف و.
خطوة 1.1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1
طبّق خاصية التوزيع.
خطوة 1.1.6.2
طبّق خاصية التوزيع.
خطوة 1.1.6.3
طبّق خاصية التوزيع.
خطوة 1.1.6.4
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.4.1
ارفع إلى القوة .
خطوة 1.1.6.4.2
ارفع إلى القوة .
خطوة 1.1.6.4.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6.4.4
أضف و.
خطوة 1.1.6.4.5
اضرب في .
خطوة 1.1.6.4.6
انقُل إلى يسار .
خطوة 1.1.6.4.7
اضرب في .
خطوة 1.1.6.4.8
اطرح من .
خطوة 1.1.6.4.9
أضف و.
خطوة 1.1.6.4.10
اطرح من .
خطوة 1.1.6.4.11
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أعِد كتابة في صورة زائد
خطوة 2.2.1.3
طبّق خاصية التوزيع.
خطوة 2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
أضف إلى كلا المتعادلين.
خطوة 2.5.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.2.1
اقسِم كل حد في على .
خطوة 2.5.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.5.2.2.2.1.2
اقسِم على .
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
اطرح من .
خطوة 4.1.2.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.3
اطرح من .
خطوة 4.1.2.4
اضرب في .
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.2.2
اجمع و.
خطوة 4.2.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.2.2.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.4.1
اضرب في .
خطوة 4.2.2.4.2
اطرح من .
خطوة 4.2.2.5
طبّق قاعدة الضرب على .
خطوة 4.2.2.6
ارفع إلى القوة .
خطوة 4.2.2.7
ارفع إلى القوة .
خطوة 4.2.2.8
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.2.9
اجمع و.
خطوة 4.2.2.10
اجمع البسوط على القاسم المشترك.
خطوة 4.2.2.11
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.11.1
اضرب في .
خطوة 4.2.2.11.2
اطرح من .
خطوة 4.2.2.12
انقُل السالب أمام الكسر.
خطوة 4.2.2.13
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.13.1
اضرب في .
خطوة 4.2.2.13.2
اضرب في .
خطوة 4.2.2.13.3
اضرب في .
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5