إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
احسِب قيمة .
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4.3
اضرب في .
خطوة 1.1.5
احسِب قيمة .
خطوة 1.1.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.3
اضرب في .
خطوة 1.1.6
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.1.6.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.6.2
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.1.4
أخرِج العامل من .
خطوة 2.2.1.5
أخرِج العامل من .
خطوة 2.2.1.6
أخرِج العامل من .
خطوة 2.2.1.7
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.2.4
أعِد كتابة بالصيغة .
خطوة 2.2.5
حلّل إلى عوامل.
خطوة 2.2.5.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.2.5.2
احذِف الأقواس غير الضرورية.
خطوة 2.2.6
حلّل إلى عوامل.
خطوة 2.2.6.1
اجمع الأُسس.
خطوة 2.2.6.1.1
ارفع إلى القوة .
خطوة 2.2.6.1.2
ارفع إلى القوة .
خطوة 2.2.6.1.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.6.1.4
أضف و.
خطوة 2.2.6.2
احذِف الأقواس غير الضرورية.
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
اطرح من كلا المتعادلين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
بسّط كل حد.
خطوة 4.1.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.1.2
اضرب في .
خطوة 4.1.2.1.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.1.4
اضرب في .
خطوة 4.1.2.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.1.6
اضرب في .
خطوة 4.1.2.1.7
اضرب في .
خطوة 4.1.2.2
بسّط عن طريق الجمع والطرح.
خطوة 4.1.2.2.1
اطرح من .
خطوة 4.1.2.2.2
اطرح من .
خطوة 4.1.2.2.3
أضف و.
خطوة 4.1.2.2.4
أضف و.
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
بسّط كل حد.
خطوة 4.2.2.1.1
ارفع إلى القوة .
خطوة 4.2.2.1.2
اضرب في .
خطوة 4.2.2.1.3
ارفع إلى القوة .
خطوة 4.2.2.1.4
اضرب في .
خطوة 4.2.2.1.5
ارفع إلى القوة .
خطوة 4.2.2.1.6
اضرب في .
خطوة 4.2.2.1.7
اضرب في .
خطوة 4.2.2.2
بسّط عن طريق الجمع والطرح.
خطوة 4.2.2.2.1
أضف و.
خطوة 4.2.2.2.2
اطرح من .
خطوة 4.2.2.2.3
اطرح من .
خطوة 4.2.2.2.4
أضف و.
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5