حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de 2nd y=(1+x)/(1-x)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.3
أضف و.
خطوة 1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.5
اضرب في .
خطوة 1.2.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.8
أضف و.
خطوة 1.2.9
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.10
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.10.1
اضرب في .
خطوة 1.2.10.2
اضرب في .
خطوة 1.2.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.12
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.12.1
اضرب في .
خطوة 1.2.12.2
أضف و.
خطوة 1.2.12.3
أضف و.
خطوة 1.2.12.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.12.4.1
أضف و.
خطوة 1.2.12.4.2
أعِد ترتيب الحدود.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.2.2
اضرب في .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب في .
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.5
اضرب في .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
أضف و.
خطوة 2.3.7.2
اضرب في .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.4.2
اجمع و.
خطوة 3
أوجِد المشتق الثالث.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.1.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
أعِد كتابة بالصيغة .
خطوة 3.1.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.1.2.2.2
اضرب في .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اضرب في .
خطوة 3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.5
اضرب في .
خطوة 3.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.7.1
أضف و.
خطوة 3.3.7.2
اضرب في .
خطوة 3.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 3.4.2
اجمع و.
خطوة 4
أوجِد المشتق الرابع.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
أعِد كتابة بالصيغة .
خطوة 4.1.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.1.2.2.2
اضرب في .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.5
اضرب في .
خطوة 4.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.7.1
أضف و.
خطوة 4.3.7.2
اضرب في .
خطوة 4.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 4.4.2
اجمع و.