إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2
أوجِد قيمة .
خطوة 1.2.1
أضِف إلى كلا طرفي المتباينة.
خطوة 1.2.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.2.1
اقسِم كل حد في على .
خطوة 1.2.2.2
بسّط الطرف الأيسر.
خطوة 1.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.2.2.1.2
اقسِم على .
خطوة 1.3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.4
أوجِد قيمة .
خطوة 1.4.1
أضف إلى كلا المتعادلين.
خطوة 1.4.2
اقسِم كل حد في على وبسّط.
خطوة 1.4.2.1
اقسِم كل حد في على .
خطوة 1.4.2.2
بسّط الطرف الأيسر.
خطوة 1.4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.4.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.4.2.2.1.2
اقسِم على .
خطوة 1.5
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
ألغِ العامل المشترك لـ .
خطوة 2.2.1
ألغِ العامل المشترك.
خطوة 2.2.2
أعِد كتابة العبارة.
خطوة 2.3
اطرح من .
خطوة 2.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 3
نقطة نهاية العبارة الجذرية هي .
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
بسّط القاسم.
خطوة 4.1.2.2.1
اضرب في .
خطوة 4.1.2.2.2
اطرح من .
خطوة 4.1.2.3
بسّط بَسْط الكسر.
خطوة 4.1.2.3.1
اضرب في .
خطوة 4.1.2.3.2
اطرح من .
خطوة 4.1.2.3.3
أي جذر لـ هو .
خطوة 4.1.2.4
اقسِم على .
خطوة 4.1.2.5
الإجابة النهائية هي .
خطوة 4.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.2.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2.2
بسّط النتيجة.
خطوة 4.2.2.1
بسّط بَسْط الكسر.
خطوة 4.2.2.1.1
اضرب في .
خطوة 4.2.2.1.2
اطرح من .
خطوة 4.2.2.2
بسّط القاسم.
خطوة 4.2.2.2.1
اضرب في .
خطوة 4.2.2.2.2
اطرح من .
خطوة 4.2.2.3
الإجابة النهائية هي .
خطوة 4.3
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.3.1
استبدِل المتغير بـ في العبارة.
خطوة 4.3.2
بسّط النتيجة.
خطوة 4.3.2.1
بسّط بَسْط الكسر.
خطوة 4.3.2.1.1
اضرب في .
خطوة 4.3.2.1.2
اطرح من .
خطوة 4.3.2.2
بسّط القاسم.
خطوة 4.3.2.2.1
اضرب في .
خطوة 4.3.2.2.2
اطرح من .
خطوة 4.3.2.3
الإجابة النهائية هي .
خطوة 4.4
يمكن تمثيل الجذر التربيعي بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 5