حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل تكامل الجذر التربيعي لـ 2x+1 بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.4.2
أضف و.
خطوة 1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
استخدِم لكتابة في صورة .
خطوة 5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة بالصيغة .
خطوة 6.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
اضرب في .
خطوة 6.2.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
أخرِج العامل من .
خطوة 6.2.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.2.1
أخرِج العامل من .
خطوة 6.2.3.2.2
ألغِ العامل المشترك.
خطوة 6.2.3.2.3
أعِد كتابة العبارة.
خطوة 7
استبدِل كافة حالات حدوث بـ .