إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة.
خطوة 2.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2
اضرب في .
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.4
اضرب في .
خطوة 3.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.4
بسّط.
خطوة 3.4.1
أضف و.
خطوة 3.4.2
أعِد ترتيب الحدود.
خطوة 3.4.3
أعِد ترتيب العوامل في .
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
خطوة 5.1
أوجِد المشتق الأول.
خطوة 5.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 5.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.1.3
أوجِد المشتقة باستخدام قاعدة القوة.
خطوة 5.1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.3.2
اضرب في .
خطوة 5.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 6
خطوة 6.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 6.2
أخرِج العامل من .
خطوة 6.2.1
أخرِج العامل من .
خطوة 6.2.2
اضرب في .
خطوة 6.2.3
أخرِج العامل من .
خطوة 6.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.4.2
أوجِد قيمة في .
خطوة 6.4.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 6.4.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 6.4.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 6.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.5.2
اطرح من كلا المتعادلين.
خطوة 6.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
خطوة 7.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 8
النقاط الحرجة اللازم حساب قيمتها.
خطوة 9
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 10
خطوة 10.1
بسّط كل حد.
خطوة 10.1.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 10.1.2
أعِد كتابة بالصيغة .
خطوة 10.1.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 10.1.4
اجمع و.
خطوة 10.2
اجمع الكسور.
خطوة 10.2.1
اجمع البسوط على القاسم المشترك.
خطوة 10.2.2
أضف و.
خطوة 11
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 12
خطوة 12.1
استبدِل المتغير بـ في العبارة.
خطوة 12.2
بسّط النتيجة.
خطوة 12.2.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 12.2.2
أعِد كتابة بالصيغة .
خطوة 12.2.3
الإجابة النهائية هي .
خطوة 13
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
خطوة 14