إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أعِد كتابة بالصيغة .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
اضرب الأُسس في .
خطوة 1.3.5.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.3.5.2
اضرب في .
خطوة 1.3.6
اضرب في .
خطوة 1.3.7
ارفع إلى القوة .
خطوة 1.3.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.3.9
اطرح من .
خطوة 1.3.10
اضرب في .
خطوة 1.4
بسّط.
خطوة 1.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.4.2
اجمع و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أعِد كتابة بالصيغة .
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.5
اضرب الأُسس في .
خطوة 2.3.5.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.5.2
اضرب في .
خطوة 2.3.6
اضرب في .
خطوة 2.3.7
اضرب في بجمع الأُسس.
خطوة 2.3.7.1
انقُل .
خطوة 2.3.7.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.7.3
اطرح من .
خطوة 2.3.8
اضرب في .
خطوة 2.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.5
بسّط.
خطوة 2.5.1
جمّع الحدود.
خطوة 2.5.1.1
اجمع و.
خطوة 2.5.1.2
انقُل السالب أمام الكسر.
خطوة 2.5.2
أعِد ترتيب الحدود.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
بما أنه لا توجد قيمة لـ تجعل المشتق الأول مساويًا لـ ، إذن لا توجد قيمة قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 5
لا توجد قيمة قصوى محلية
خطوة 6