حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=5cos(x)^2
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
اضرب في .
خطوة 1.4
مشتق بالنسبة إلى يساوي .
خطوة 1.5
اضرب في .
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
مشتق بالنسبة إلى يساوي .
خطوة 2.4
ارفع إلى القوة .
خطوة 2.5
ارفع إلى القوة .
خطوة 2.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.7
أضف و.
خطوة 2.8
مشتق بالنسبة إلى يساوي .
خطوة 2.9
ارفع إلى القوة .
خطوة 2.10
ارفع إلى القوة .
خطوة 2.11
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.12
أضف و.
خطوة 2.13
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.13.1
طبّق خاصية التوزيع.
خطوة 2.13.2
اضرب في .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 5.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
القيمة الدقيقة لـ هي .
خطوة 5.2.3
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 5.2.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.4.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.2.1
اجمع و.
خطوة 5.2.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.4.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.3.1
اضرب في .
خطوة 5.2.4.3.2
اطرح من .
خطوة 5.2.5
حل المعادلة .
خطوة 6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
القيمة الدقيقة لـ هي .
خطوة 6.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.2.4
اطرح من .
خطوة 6.2.5
حل المعادلة .
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
القيمة الدقيقة لـ هي .
خطوة 9.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.1.3
اضرب في .
خطوة 9.1.4
القيمة الدقيقة لـ هي .
خطوة 9.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 9.1.6
اضرب في .
خطوة 9.2
أضف و.
خطوة 10
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 11
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
القيمة الدقيقة لـ هي .
خطوة 11.2.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 11.2.3
اضرب في .
خطوة 11.2.4
الإجابة النهائية هي .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 13.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 13.1.2
القيمة الدقيقة لـ هي .
خطوة 13.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.1.4
اضرب في .
خطوة 13.1.5
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الرابع.
خطوة 13.1.6
القيمة الدقيقة لـ هي .
خطوة 13.1.7
اضرب في .
خطوة 13.1.8
ارفع إلى القوة .
خطوة 13.1.9
اضرب في .
خطوة 13.2
أضف و.
خطوة 14
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 15
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 15.1
استبدِل المتغير بـ في العبارة.
خطوة 15.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 15.2.2
القيمة الدقيقة لـ هي .
خطوة 15.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 15.2.4
اضرب في .
خطوة 15.2.5
الإجابة النهائية هي .
خطوة 16
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 17
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 17.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 17.1.1
القيمة الدقيقة لـ هي .
خطوة 17.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 17.1.3
اضرب في .
خطوة 17.1.4
القيمة الدقيقة لـ هي .
خطوة 17.1.5
ينتج عن رفع إلى أي قوة موجبة.
خطوة 17.1.6
اضرب في .
خطوة 17.2
أضف و.
خطوة 18
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 19
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 19.1
استبدِل المتغير بـ في العبارة.
خطوة 19.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.1
القيمة الدقيقة لـ هي .
خطوة 19.2.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 19.2.3
اضرب في .
خطوة 19.2.4
الإجابة النهائية هي .
خطوة 20
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 21
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 21.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 21.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 21.1.2
القيمة الدقيقة لـ هي .
خطوة 21.1.3
اضرب في .
خطوة 21.1.4
ارفع إلى القوة .
خطوة 21.1.5
اضرب في .
خطوة 21.1.6
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 21.1.7
القيمة الدقيقة لـ هي .
خطوة 21.1.8
ينتج عن رفع إلى أي قوة موجبة.
خطوة 21.1.9
اضرب في .
خطوة 21.2
أضف و.
خطوة 22
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 23
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 23.1
استبدِل المتغير بـ في العبارة.
خطوة 23.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 23.2.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 23.2.2
القيمة الدقيقة لـ هي .
خطوة 23.2.3
اضرب في .
خطوة 23.2.4
ارفع إلى القوة .
خطوة 23.2.5
اضرب في .
خطوة 23.2.6
الإجابة النهائية هي .
خطوة 24
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
هي نقاط دنيا محلية
هي نقطة قصوى محلية
هي نقطة قصوى محلية
خطوة 25