حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية y=6(x-1)^(2/3)-2(x-1)^2
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أعِد كتابة بالصيغة .
خطوة 2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
طبّق خاصية التوزيع.
خطوة 2.2.2
طبّق خاصية التوزيع.
خطوة 2.2.3
طبّق خاصية التوزيع.
خطوة 2.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
اضرب في .
خطوة 2.3.1.2
انقُل إلى يسار .
خطوة 2.3.1.3
أعِد كتابة بالصيغة .
خطوة 2.3.1.4
أعِد كتابة بالصيغة .
خطوة 2.3.1.5
اضرب في .
خطوة 2.3.2
اطرح من .
خطوة 2.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.5.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.5.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.5.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.5.7
اجمع و.
خطوة 2.5.8
اجمع البسوط على القاسم المشترك.
خطوة 2.5.9
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.9.1
اضرب في .
خطوة 2.5.9.2
اطرح من .
خطوة 2.5.10
انقُل السالب أمام الكسر.
خطوة 2.5.11
أضف و.
خطوة 2.5.12
اجمع و.
خطوة 2.5.13
اضرب في .
خطوة 2.5.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.5.15
اجمع و.
خطوة 2.5.16
اضرب في .
خطوة 2.5.17
أخرِج العامل من .
خطوة 2.5.18
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.18.1
أخرِج العامل من .
خطوة 2.5.18.2
ألغِ العامل المشترك.
خطوة 2.5.18.3
أعِد كتابة العبارة.
خطوة 2.6
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.6.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.6.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.6.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.6.7
اضرب في .
خطوة 2.6.8
أضف و.
خطوة 2.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1
طبّق خاصية التوزيع.
خطوة 2.7.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.7.2.1
اضرب في .
خطوة 2.7.2.2
اضرب في .
خطوة 2.7.3
أعِد ترتيب الحدود.
خطوة 3
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.3
اضرب في .
خطوة 3.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أعِد كتابة بالصيغة .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.8
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.8.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.8.2
اجمع و.
خطوة 3.3.8.3
انقُل السالب أمام الكسر.
خطوة 3.3.9
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.3.10
اجمع و.
خطوة 3.3.11
اجمع البسوط على القاسم المشترك.
خطوة 3.3.12
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.12.1
اضرب في .
خطوة 3.3.12.2
اطرح من .
خطوة 3.3.13
انقُل السالب أمام الكسر.
خطوة 3.3.14
أضف و.
خطوة 3.3.15
اجمع و.
خطوة 3.3.16
اضرب في .
خطوة 3.3.17
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 3.3.18
اجمع و.
خطوة 3.3.19
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 3.3.20
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.20.1
انقُل .
خطوة 3.3.20.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.3.20.3
اجمع البسوط على القاسم المشترك.
خطوة 3.3.20.4
أضف و.
خطوة 3.3.21
اضرب في .
خطوة 3.3.22
اجمع و.
خطوة 3.3.23
انقُل السالب أمام الكسر.
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4.2
أضف و.
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أعِد كتابة بالصيغة .
خطوة 5.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1
طبّق خاصية التوزيع.
خطوة 5.1.2.2
طبّق خاصية التوزيع.
خطوة 5.1.2.3
طبّق خاصية التوزيع.
خطوة 5.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.3.1.1
اضرب في .
خطوة 5.1.3.1.2
انقُل إلى يسار .
خطوة 5.1.3.1.3
أعِد كتابة بالصيغة .
خطوة 5.1.3.1.4
أعِد كتابة بالصيغة .
خطوة 5.1.3.1.5
اضرب في .
خطوة 5.1.3.2
اطرح من .
خطوة 5.1.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.5.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.5.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 5.1.5.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.5.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 5.1.5.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.5.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.5.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.5.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.1.5.7
اجمع و.
خطوة 5.1.5.8
اجمع البسوط على القاسم المشترك.
خطوة 5.1.5.9
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.5.9.1
اضرب في .
خطوة 5.1.5.9.2
اطرح من .
خطوة 5.1.5.10
انقُل السالب أمام الكسر.
خطوة 5.1.5.11
أضف و.
خطوة 5.1.5.12
اجمع و.
خطوة 5.1.5.13
اضرب في .
خطوة 5.1.5.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 5.1.5.15
اجمع و.
خطوة 5.1.5.16
اضرب في .
خطوة 5.1.5.17
أخرِج العامل من .
خطوة 5.1.5.18
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.5.18.1
أخرِج العامل من .
خطوة 5.1.5.18.2
ألغِ العامل المشترك.
خطوة 5.1.5.18.3
أعِد كتابة العبارة.
خطوة 5.1.6
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.6.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.6.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.6.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.6.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.6.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.6.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.6.7
اضرب في .
خطوة 5.1.6.8
أضف و.
خطوة 5.1.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.7.1
طبّق خاصية التوزيع.
خطوة 5.1.7.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.7.2.1
اضرب في .
خطوة 5.1.7.2.2
اضرب في .
خطوة 5.1.7.3
أعِد ترتيب الحدود.
خطوة 5.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 6
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 6.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
خطوة 7
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 7.1.2
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 7.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 7.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.1
لحذف الجذر في المتعادل الأيسر، كعِّب كلا المتعادلين.
خطوة 7.3.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.1
استخدِم لكتابة في صورة .
خطوة 7.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 7.3.2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 7.3.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 7.3.2.2.1.2
بسّط.
خطوة 7.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 7.3.3
أضف إلى كلا المتعادلين.
خطوة 8
النقاط الحرجة اللازم حساب قيمتها.
خطوة 9
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 10
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 10.1.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 10.1.1.1
اطرح من .
خطوة 10.1.1.2
أعِد كتابة بالصيغة .
خطوة 10.1.1.3
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 10.1.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 10.1.1.4.1
ألغِ العامل المشترك.
خطوة 10.1.1.4.2
أعِد كتابة العبارة.
خطوة 10.1.1.5
ارفع إلى القوة .
خطوة 10.1.2
اضرب في .
خطوة 10.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 10.3
اجمع و.
خطوة 10.4
اجمع البسوط على القاسم المشترك.
خطوة 10.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 10.5.1
اضرب في .
خطوة 10.5.2
اطرح من .
خطوة 10.6
انقُل السالب أمام الكسر.
خطوة 11
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 12
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
استبدِل المتغير بـ في العبارة.
خطوة 12.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1.1
اطرح من .
خطوة 12.2.1.2
أعِد كتابة بالصيغة .
خطوة 12.2.1.3
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 12.2.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1.4.1
ألغِ العامل المشترك.
خطوة 12.2.1.4.2
أعِد كتابة العبارة.
خطوة 12.2.1.5
ارفع إلى القوة .
خطوة 12.2.1.6
اضرب في .
خطوة 12.2.1.7
اطرح من .
خطوة 12.2.1.8
ارفع إلى القوة .
خطوة 12.2.1.9
اضرب في .
خطوة 12.2.2
اطرح من .
خطوة 12.2.3
الإجابة النهائية هي .
خطوة 13
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 14
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 14.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 14.1.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 14.1.1.1
اطرح من .
خطوة 14.1.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 14.1.2
اضرب في .
خطوة 14.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 14.3
اجمع و.
خطوة 14.4
اجمع البسوط على القاسم المشترك.
خطوة 14.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 14.5.1
اضرب في .
خطوة 14.5.2
اطرح من .
خطوة 14.6
انقُل السالب أمام الكسر.
خطوة 15
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 16
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 16.1
استبدِل المتغير بـ في العبارة.
خطوة 16.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 16.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 16.2.1.1
اطرح من .
خطوة 16.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 16.2.1.3
اضرب في .
خطوة 16.2.1.4
اطرح من .
خطوة 16.2.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 16.2.1.6
اضرب في .
خطوة 16.2.2
اطرح من .
خطوة 16.2.3
الإجابة النهائية هي .
خطوة 17
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 18
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 18.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 18.1.1
اطرح من .
خطوة 18.1.2
أعِد كتابة بالصيغة .
خطوة 18.1.3
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 18.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 18.2.1
ألغِ العامل المشترك.
خطوة 18.2.2
أعِد كتابة العبارة.
خطوة 18.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 18.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 18.3.2
اضرب في .
خطوة 18.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 18.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
خطوة 19
نظرًا إلى وجود نقطة واحدة على الأقل بها أو مشتق ثانٍ غير معرّف، طبّق اختبار المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 19.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 19.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.1
استبدِل المتغير بـ في العبارة.
خطوة 19.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.2.1.1
اضرب في .
خطوة 19.2.2.1.2
اطرح من .
خطوة 19.2.2.2
أضف و.
خطوة 19.2.2.3
الإجابة النهائية هي .
خطوة 19.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 19.3.1
استبدِل المتغير بـ في العبارة.
خطوة 19.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 19.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 19.3.2.1.1
اضرب في .
خطوة 19.3.2.1.2
اطرح من .
خطوة 19.3.2.2
أضف و.
خطوة 19.3.2.3
الإجابة النهائية هي .
خطوة 19.4
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 19.4.1
استبدِل المتغير بـ في العبارة.
خطوة 19.4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 19.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 19.4.2.1.1
اضرب في .
خطوة 19.4.2.1.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 19.4.2.1.2.1
اطرح من .
خطوة 19.4.2.1.2.2
ارفع إلى القوة .
خطوة 19.4.2.1.3
اقسِم على .
خطوة 19.4.2.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 19.4.2.2.1
أضف و.
خطوة 19.4.2.2.2
أضف و.
خطوة 19.4.2.3
الإجابة النهائية هي .
خطوة 19.5
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 19.5.1
استبدِل المتغير بـ في العبارة.
خطوة 19.5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 19.5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 19.5.2.1.1
اضرب في .
خطوة 19.5.2.1.2
اطرح من .
خطوة 19.5.2.2
أضف و.
خطوة 19.5.2.3
الإجابة النهائية هي .
خطوة 19.6
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 19.7
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
خطوة 19.8
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 19.9
هذه هي القيم القصوى المحلية لـ .
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
خطوة 20