إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أضف و.
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.3
اضرب في .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.2
أضف و.
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
خطوة 5.1
أوجِد المشتق الأول.
خطوة 5.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.2
احسِب قيمة .
خطوة 5.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.2.3
اضرب في .
خطوة 5.1.3
احسِب قيمة .
خطوة 5.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.3.3
اضرب في .
خطوة 5.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 5.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.4.2
أضف و.
خطوة 5.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 6
خطوة 6.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 6.2
أضف إلى كلا المتعادلين.
خطوة 6.3
اقسِم كل حد في على وبسّط.
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
خطوة 6.3.2.1
ألغِ العامل المشترك لـ .
خطوة 6.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.2
اقسِم على .
خطوة 6.3.3
بسّط الطرف الأيمن.
خطوة 6.3.3.1
اقسِم على .
خطوة 6.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 6.5
بسّط .
خطوة 6.5.1
أعِد كتابة بالصيغة .
خطوة 6.5.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 7
خطوة 7.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 8
النقاط الحرجة اللازم حساب قيمتها.
خطوة 9
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 10
اضرب في .
خطوة 11
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 12
خطوة 12.1
استبدِل المتغير بـ في العبارة.
خطوة 12.2
بسّط النتيجة.
خطوة 12.2.1
بسّط كل حد.
خطوة 12.2.1.1
اضرب في بجمع الأُسس.
خطوة 12.2.1.1.1
اضرب في .
خطوة 12.2.1.1.1.1
ارفع إلى القوة .
خطوة 12.2.1.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 12.2.1.1.2
أضف و.
خطوة 12.2.1.2
ارفع إلى القوة .
خطوة 12.2.1.3
اضرب في .
خطوة 12.2.2
بسّط بطرح الأعداد.
خطوة 12.2.2.1
اطرح من .
خطوة 12.2.2.2
اطرح من .
خطوة 12.2.3
الإجابة النهائية هي .
خطوة 13
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 14
اضرب في .
خطوة 15
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 16
خطوة 16.1
استبدِل المتغير بـ في العبارة.
خطوة 16.2
بسّط النتيجة.
خطوة 16.2.1
بسّط كل حد.
خطوة 16.2.1.1
ارفع إلى القوة .
خطوة 16.2.1.2
اضرب في .
خطوة 16.2.1.3
اضرب في .
خطوة 16.2.2
بسّط عن طريق الجمع والطرح.
خطوة 16.2.2.1
أضف و.
خطوة 16.2.2.2
اطرح من .
خطوة 16.2.3
الإجابة النهائية هي .
خطوة 17
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
هي نقطة قصوى محلية
خطوة 18