إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.4
اضرب في .
خطوة 2.2.5
انقُل إلى يسار .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.5
اضرب في .
خطوة 3.2.6
انقُل إلى يسار .
خطوة 3.2.7
اضرب في .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
خطوة 5.1
أوجِد المشتق الأول.
خطوة 5.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.2
احسِب قيمة .
خطوة 5.1.2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 5.1.2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 5.1.2.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.1.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 5.1.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.2.4
اضرب في .
خطوة 5.1.2.5
انقُل إلى يسار .
خطوة 5.1.3
احسِب قيمة .
خطوة 5.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 6
خطوة 6.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 6.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 6.2.1
أعِد كتابة بالصيغة .
خطوة 6.2.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 6.2.3
أخرِج العامل من .
خطوة 6.2.3.1
أخرِج العامل من .
خطوة 6.2.3.2
أخرِج العامل من .
خطوة 6.2.3.3
أخرِج العامل من .
خطوة 6.2.4
استبدِل كافة حالات حدوث بـ .
خطوة 6.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.4.2
أوجِد قيمة في .
خطوة 6.4.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 6.4.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 6.4.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 6.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.5.2
أوجِد قيمة في .
خطوة 6.5.2.1
أضف إلى كلا المتعادلين.
خطوة 6.5.2.2
اقسِم كل حد في على وبسّط.
خطوة 6.5.2.2.1
اقسِم كل حد في على .
خطوة 6.5.2.2.2
بسّط الطرف الأيسر.
خطوة 6.5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.5.2.2.2.1.2
اقسِم على .
خطوة 6.5.2.3
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 6.5.2.4
وسّع الطرف الأيسر.
خطوة 6.5.2.4.1
وسّع بنقل خارج اللوغاريتم.
خطوة 6.5.2.4.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 6.5.2.4.3
اضرب في .
خطوة 6.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
خطوة 7.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 8
النقاط الحرجة اللازم حساب قيمتها.
خطوة 9
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 10
خطوة 10.1
بسّط كل حد.
خطوة 10.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 10.1.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 10.1.3
طبّق قاعدة الضرب على .
خطوة 10.1.4
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 10.1.5
ارفع إلى القوة .
خطوة 10.1.6
ألغِ العامل المشترك لـ .
خطوة 10.1.6.1
ألغِ العامل المشترك.
خطوة 10.1.6.2
أعِد كتابة العبارة.
خطوة 10.1.7
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 10.2
بسّط العبارة.
خطوة 10.2.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 10.2.2
اجمع البسوط على القاسم المشترك.
خطوة 10.2.3
اطرح من .
خطوة 11
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 12
خطوة 12.1
استبدِل المتغير بـ في العبارة.
خطوة 12.2
بسّط النتيجة.
خطوة 12.2.1
بسّط كل حد.
خطوة 12.2.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 12.2.1.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 12.2.1.3
طبّق قاعدة الضرب على .
خطوة 12.2.1.4
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 12.2.1.5
ارفع إلى القوة .
خطوة 12.2.1.6
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 12.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.2.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 12.2.3.1
اضرب في .
خطوة 12.2.3.2
اضرب في .
خطوة 12.2.4
اجمع البسوط على القاسم المشترك.
خطوة 12.2.5
اطرح من .
خطوة 12.2.6
انقُل السالب أمام الكسر.
خطوة 12.2.7
الإجابة النهائية هي .
خطوة 13
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
خطوة 14