إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب في .
خطوة 3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
بسّط العبارة.
خطوة 3.6.1
أضف و.
خطوة 3.6.2
انقُل إلى يسار .
خطوة 4
خطوة 4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4.3
استبدِل كافة حالات حدوث بـ .
خطوة 5
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.3
بسّط العبارة.
خطوة 5.3.1
اضرب في .
خطوة 5.3.2
انقُل إلى يسار .
خطوة 6
خطوة 6.1
طبّق خاصية التوزيع.
خطوة 6.2
طبّق خاصية التوزيع.
خطوة 6.3
طبّق خاصية التوزيع.
خطوة 6.4
جمّع الحدود.
خطوة 6.4.1
اضرب في .
خطوة 6.4.2
اضرب في .
خطوة 6.4.3
اضرب في .
خطوة 6.4.4
اضرب في .
خطوة 6.4.5
اضرب في .
خطوة 6.4.6
اطرح من .
خطوة 6.5
أعِد ترتيب الحدود.
خطوة 6.6
أعِد ترتيب العوامل في .