إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.4.2
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.2.3.1
أخرِج العامل من .
خطوة 2.2.3.2
أخرِج العامل من .
خطوة 2.2.3.3
أخرِج العامل من .
خطوة 2.2.4
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.4.2.2
بسّط .
خطوة 2.4.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.2.2.3
زائد أو ناقص يساوي .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
أضف إلى كلا المتعادلين.
خطوة 2.5.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.5.2.3
أي جذر لـ هو .
خطوة 2.5.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.5.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.5.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
بسّط كل حد.
خطوة 4.1.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.1.2
اضرب في .
خطوة 4.1.2.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.1.4
اضرب في .
خطوة 4.1.2.2
بسّط بجمع الأعداد.
خطوة 4.1.2.2.1
أضف و.
خطوة 4.1.2.2.2
أضف و.
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
بسّط كل حد.
خطوة 4.2.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.2.1.2
اضرب في .
خطوة 4.2.2.1.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.2.1.4
اضرب في .
خطوة 4.2.2.2
بسّط عن طريق الجمع والطرح.
خطوة 4.2.2.2.1
اطرح من .
خطوة 4.2.2.2.2
أضف و.
خطوة 4.3
احسِب القيمة في .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط.
خطوة 4.3.2.1
بسّط كل حد.
خطوة 4.3.2.1.1
ارفع إلى القوة .
خطوة 4.3.2.1.2
اضرب في .
خطوة 4.3.2.1.3
ارفع إلى القوة .
خطوة 4.3.2.1.4
اضرب في .
خطوة 4.3.2.2
بسّط بجمع الأعداد.
خطوة 4.3.2.2.1
أضف و.
خطوة 4.3.2.2.2
أضف و.
خطوة 4.4
اسرِد جميع النقاط.
خطوة 5