حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
طبّق خاصية التوزيع.
خطوة 4.2.2
طبّق خاصية التوزيع.
خطوة 4.2.3
طبّق خاصية التوزيع.
خطوة 4.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
اضرب في .
خطوة 4.3.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.2.1
ألغِ العامل المشترك.
خطوة 4.3.1.2.2
أعِد كتابة العبارة.
خطوة 4.3.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.3.1
ألغِ العامل المشترك.
خطوة 4.3.1.3.2
أعِد كتابة العبارة.
خطوة 4.3.1.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.4.1
اضرب في .
خطوة 4.3.1.4.2
ارفع إلى القوة .
خطوة 4.3.1.4.3
ارفع إلى القوة .
خطوة 4.3.1.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.1.4.5
أضف و.
خطوة 4.3.2
أضف و.
خطوة 5
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 7
طبّق قاعدة الثابت.
خطوة 8
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 8.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 8.2.2
اضرب في .
خطوة 9
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 10
بسّط.
خطوة 11
الإجابة هي المشتق العكسي للدالة .