إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
يمكن إيجاد الدالة بحساب قيمة التكامل غير المحدد للمشتق .
خطوة 2
خطوة 2.1
افترض أن . أوجِد .
خطوة 2.1.1
أوجِد مشتقة .
خطوة 2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.5
أضف و.
خطوة 2.2
أعِد كتابة المسألة باستخدام و.
خطوة 3
خطوة 3.1
طبّق خاصية التوزيع.
خطوة 3.2
ارفع إلى القوة .
خطوة 3.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4
أضف و.
خطوة 3.5
اضرب في .
خطوة 4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 7
بسّط.
خطوة 8
استبدِل كافة حالات حدوث بـ .
خطوة 9
الدالة إذا كانت مشتقة من تكامل مشتق الدالة. ويُعد هذا صحيحًا وفقًا للنظرية الأساسية للتفاضل والتكامل.