حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اجمع و.
خطوة 5.2
انقُل إلى يسار .
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
اضرب في .
خطوة 8
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1.1
أوجِد مشتقة .
خطوة 8.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.5
أضف و.
خطوة 8.2
أعِد كتابة المسألة باستخدام و.
خطوة 9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اضرب في .
خطوة 9.2
انقُل إلى يسار .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
اجمع و.
خطوة 11.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
أخرِج العامل من .
خطوة 11.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.2.1
أخرِج العامل من .
خطوة 11.2.2.2
ألغِ العامل المشترك.
خطوة 11.2.2.3
أعِد كتابة العبارة.
خطوة 11.2.2.4
اقسِم على .
خطوة 12
تكامل بالنسبة إلى هو .
خطوة 13
أعِد كتابة بالصيغة .
خطوة 14
استبدِل كافة حالات حدوث بـ .
خطوة 15
الإجابة هي المشتق العكسي للدالة .