حساب التفاضل والتكامل الأمثلة

خطوة 1
انظر قاعدة ناتج الفرق.
خطوة 2
أوجِد مكونات التعريف.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة الدالة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
استبدِل المتغير بـ في العبارة.
خطوة 2.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
طبّق خاصية التوزيع.
خطوة 2.1.2.2.2
طبّق خاصية التوزيع.
خطوة 2.1.2.2.3
طبّق خاصية التوزيع.
خطوة 2.1.2.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1.1
اضرب في .
خطوة 2.1.2.3.1.2
اضرب في .
خطوة 2.1.2.3.2
أضف و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.2.1
أعِد ترتيب و.
خطوة 2.1.2.3.2.2
أضف و.
خطوة 2.1.2.4
طبّق خاصية التوزيع.
خطوة 2.1.2.5
اضرب في .
خطوة 2.1.2.6
الإجابة النهائية هي .
خطوة 2.2
أعِد الترتيب.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
انقُل .
خطوة 2.2.2
أعِد ترتيب و.
خطوة 2.3
أوجِد مكونات التعريف.
خطوة 3
عوّض بالمكونات.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
اضرب في .
خطوة 4.1.2
اضرب في .
خطوة 4.1.3
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 4.1.3.2
أعِد كتابة متعدد الحدود.
خطوة 4.1.3.3
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 4.1.4
أعِد ترتيب و.
خطوة 4.1.5
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 4.1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.6.1
أضف و.
خطوة 4.1.6.2
طبّق خاصية التوزيع.
خطوة 4.1.6.3
اطرح من .
خطوة 4.1.6.4
أضف و.
خطوة 4.1.6.5
أخرِج السالب.
خطوة 4.2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.2.2
طبّق خاصية التوزيع.
خطوة 4.2.3
اضرب في .
خطوة 5