حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب h من 0 لـ ( اللوغاريتم الطبيعي لـ 2+h- اللوغاريتم الطبيعي لـ 2)/h
خطوة 1
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 2
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
انقُل النهاية داخل اللوغاريتم.
خطوة 2.1.2.1.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.2.1.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.1.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
أضف و.
خطوة 2.1.2.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.2.1
ألغِ العامل المشترك.
خطوة 2.1.2.3.2.2
أعِد كتابة العبارة.
خطوة 2.1.2.3.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.1.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.3
اضرب في مقلوب الكسر للقسمة على .
خطوة 2.3.4
اضرب في .
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.6
اضرب في .
خطوة 2.3.7
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
ألغِ العامل المشترك.
خطوة 2.3.7.2
أعِد كتابة العبارة.
خطوة 2.3.8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.10
أضف و.
خطوة 2.3.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.12
اضرب في .
خطوة 2.3.13
أعِد ترتيب الحدود.
خطوة 2.3.14
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.5
اضرب في .
خطوة 3
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
أضف و.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: