حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب t من 0 لـ (e^t-1)/(t^7)
خطوة 1
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.1.2
انقُل النهاية إلى الأُس.
خطوة 1.1.2.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1.1
أي شيء مرفوع إلى هو .
خطوة 1.1.2.3.1.2
اضرب في .
خطوة 1.1.2.3.2
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
أضف و.
خطوة 1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2
بما أن البسط موجب والقاسم يقترب من الصفر وأكبر من الصفر لـ بالقرب من في كلا الطرفين، إذن الدالة تتزايد بلا حدود.