حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من 0 لـ (arctan(2x))/(3x)
خطوة 1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.2
عوّض بـ عن وافترض أن تقترب من بما أن .
خطوة 2.1.2.3
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.3.2
القيمة الدقيقة لـ هي .
خطوة 2.1.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.3
أخرِج العامل من .
خطوة 2.3.4
طبّق قاعدة الضرب على .
خطوة 2.3.5
ارفع إلى القوة .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.7
اجمع و.
خطوة 2.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.9
اضرب في .
خطوة 2.3.10
أعِد ترتيب الحدود.
خطوة 2.3.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.5
اضرب في .
خطوة 3
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.5
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.6
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 3.7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اجمع و.
خطوة 5.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 5.2.2
اضرب في .
خطوة 5.2.3
أضف و.
خطوة 5.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
ألغِ العامل المشترك.
خطوة 5.3.2
أعِد كتابة العبارة.
خطوة 5.4
اضرب في .
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: