إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
انقُل النهاية داخل اللوغاريتم.
خطوة 1.1.2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.5
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.1.2.6
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.2.6.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.6.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.7
بسّط الإجابة.
خطوة 1.1.2.7.1
بسّط كل حد.
خطوة 1.1.2.7.1.1
أضف و.
خطوة 1.1.2.7.1.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.1.2.7.1.3
القيمة الدقيقة لـ هي .
خطوة 1.1.2.7.1.4
اضرب في .
خطوة 1.1.2.7.2
أضف و.
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.1.3.3
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.3.3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.4
بسّط الإجابة.
خطوة 1.1.3.4.1
القيمة الدقيقة لـ هي .
خطوة 1.1.3.4.2
اضرب في .
خطوة 1.1.3.4.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.5
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
احسِب قيمة .
خطوة 1.3.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.3.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.5
أضف و.
خطوة 1.3.3.6
اضرب في .
خطوة 1.3.4
احسِب قيمة .
خطوة 1.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.5
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3.6
مشتق بالنسبة إلى يساوي .
خطوة 1.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.8
اضرب في .
خطوة 2
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
خطوة 2.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.6
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 2.1.2.7
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 2.1.2.7.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.7.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.8
بسّط الإجابة.
خطوة 2.1.2.8.1
بسّط كل حد.
خطوة 2.1.2.8.1.1
أضف و.
خطوة 2.1.2.8.1.2
اقسِم على .
خطوة 2.1.2.8.1.3
القيمة الدقيقة لـ هي .
خطوة 2.1.2.8.1.4
اضرب في .
خطوة 2.1.2.8.2
اطرح من .
خطوة 2.1.3
احسِب قيمة حد القاسم.
خطوة 2.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.2
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 2.1.3.4
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 2.1.3.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 2.1.3.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.5.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.6
بسّط الإجابة.
خطوة 2.1.3.6.1
بسّط كل حد.
خطوة 2.1.3.6.1.1
القيمة الدقيقة لـ هي .
خطوة 2.1.3.6.1.2
اضرب في .
خطوة 2.1.3.6.1.3
القيمة الدقيقة لـ هي .
خطوة 2.1.3.6.2
أضف و.
خطوة 2.1.3.6.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.7
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
احسِب قيمة .
خطوة 2.3.3.1
أعِد كتابة بالصيغة .
خطوة 2.3.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.6
أضف و.
خطوة 2.3.3.7
اضرب في .
خطوة 2.3.4
احسِب قيمة .
خطوة 2.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.3
اضرب في .
خطوة 2.3.4.4
اضرب في .
خطوة 2.3.5
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7
احسِب قيمة .
خطوة 2.3.7.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.7.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.7.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7.4
اضرب في .
خطوة 2.3.8
مشتق بالنسبة إلى يساوي .
خطوة 2.3.9
بسّط.
خطوة 2.3.9.1
أضف و.
خطوة 2.3.9.2
أعِد ترتيب الحدود.
خطوة 3
خطوة 3.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.3
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.5
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 3.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.8
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 3.9
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.10
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.11
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 3.12
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.13
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 4
خطوة 4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.5
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
خطوة 5.1
Multiply the numerator and denominator of the fraction by .
خطوة 5.1.1
اضرب في .
خطوة 5.1.2
اجمع.
خطوة 5.2
طبّق خاصية التوزيع.
خطوة 5.3
ألغِ العامل المشترك لـ .
خطوة 5.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 5.3.2
ألغِ العامل المشترك.
خطوة 5.3.3
أعِد كتابة العبارة.
خطوة 5.4
بسّط بَسْط الكسر.
خطوة 5.4.1
أضف و.
خطوة 5.4.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.4.3
اضرب في .
خطوة 5.4.4
القيمة الدقيقة لـ هي .
خطوة 5.4.5
أضف و.
خطوة 5.5
بسّط القاسم.
خطوة 5.5.1
أضف و.
خطوة 5.5.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.5.3
اضرب في .
خطوة 5.5.4
القيمة الدقيقة لـ هي .
خطوة 5.5.5
اضرب في .
خطوة 5.5.6
أضف و.
خطوة 5.5.7
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.5.8
اضرب في .
خطوة 5.5.9
القيمة الدقيقة لـ هي .
خطوة 5.5.10
اضرب في .
خطوة 5.5.11
أضف و.
خطوة 5.6
انقُل السالب أمام الكسر.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: