إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
خطوة 2.1.2.1
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.1.3
احسِب قيمة حد القاسم.
خطوة 2.1.3.1
احسِب قيمة النهاية.
خطوة 2.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 2.1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.3
بسّط الإجابة.
خطوة 2.1.3.3.1
بسّط كل حد.
خطوة 2.1.3.3.1.1
القيمة الدقيقة لـ هي .
خطوة 2.1.3.3.1.2
اضرب في .
خطوة 2.1.3.3.2
اطرح من .
خطوة 2.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4
مشتق بالنسبة إلى يساوي .
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.6
أضف و.
خطوة 3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4
خطوة 4.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 4.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 4.1.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3
احسِب قيمة حد القاسم.
خطوة 4.1.3.1
احسِب قيمة النهاية.
خطوة 4.1.3.1.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.1.3.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 4.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3.3
بسّط الإجابة.
خطوة 4.1.3.3.1
القيمة الدقيقة لـ هي .
خطوة 4.1.3.3.2
اضرب في .
خطوة 4.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 4.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 4.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 4.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.4
مشتق بالنسبة إلى يساوي .
خطوة 4.4
احذِف العامل المشترك لـ و.
خطوة 4.4.1
أعِد كتابة بالصيغة .
خطوة 4.4.2
انقُل السالب أمام الكسر.
خطوة 5
خطوة 5.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.4
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 6
احسِب قيمة حد بالتعويض عن بـ .
خطوة 7
خطوة 7.1
اضرب .
خطوة 7.1.1
اضرب في .
خطوة 7.1.2
اضرب في .
خطوة 7.2
حوّل من إلى .
خطوة 7.3
القيمة الدقيقة لـ هي .
خطوة 7.4
اضرب في .