إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
بما أن و، طبّق مبرهنة العصر.
خطوة 3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4
خطوة 4.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 4.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 4.1.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3
احسِب قيمة حد القاسم.
خطوة 4.1.3.1
احسِب قيمة النهاية.
خطوة 4.1.3.1.1
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة المماس متصلة.
خطوة 4.1.3.1.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3.3
بسّط الإجابة.
خطوة 4.1.3.3.1
اضرب في .
خطوة 4.1.3.3.2
القيمة الدقيقة لـ هي .
خطوة 4.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 4.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 4.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 4.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 4.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.6
اضرب في .
خطوة 4.3.7
انقُل إلى يسار .
خطوة 5
خطوة 5.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.4
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 5.5
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة القاطع متصلة.
خطوة 5.6
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 6
احسِب قيمة حد بالتعويض عن بـ .
خطوة 7
خطوة 7.1
بسّط كل حد.
خطوة 7.1.1
اضرب في .
خطوة 7.1.2
ألغِ العامل المشترك لـ .
خطوة 7.1.2.1
أخرِج العامل من .
خطوة 7.1.2.2
ألغِ العامل المشترك.
خطوة 7.1.2.3
أعِد كتابة العبارة.
خطوة 7.1.3
اجمع.
خطوة 7.1.4
اضرب في .
خطوة 7.1.5
بسّط القاسم.
خطوة 7.1.5.1
اضرب في .
خطوة 7.1.5.2
القيمة الدقيقة لـ هي .
خطوة 7.1.5.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.1.6
اضرب في .
خطوة 7.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 7.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 7.4
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 7.4.1
اضرب في .
خطوة 7.4.2
اضرب في .
خطوة 7.4.3
اضرب في .
خطوة 7.4.4
اضرب في .
خطوة 7.5
اجمع البسوط على القاسم المشترك.
خطوة 7.6
أضف و.
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: