حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من 1 لـ (1-x+ اللوغاريتم الطبيعي لـ x)/(1+cos(3pix))
خطوة 1
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.3
انقُل النهاية داخل اللوغاريتم.
خطوة 1.1.2.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.5.1
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.1.2.5.2
اطرح من .
خطوة 1.1.2.5.3
أضف و.
خطوة 1.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.1.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 1.1.3.1.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1.1
اضرب في .
خطوة 1.1.3.3.1.2
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 1.1.3.3.1.3
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 1.1.3.3.1.4
القيمة الدقيقة لـ هي .
خطوة 1.1.3.3.1.5
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4.3
اضرب في .
خطوة 1.3.5
مشتق بالنسبة إلى يساوي .
خطوة 1.3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.1
اطرح من .
خطوة 1.3.6.2
أعِد ترتيب الحدود.
خطوة 1.3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.9
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.9.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.9.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.9.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.9.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.9.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.9.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.9.4
اضرب في .
خطوة 1.3.9.5
اضرب في .
خطوة 1.3.10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.10.1
اطرح من .
خطوة 1.3.10.2
أعِد ترتيب عوامل .
خطوة 1.4
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4.2
اجمع و.
خطوة 1.4.3
اجمع البسوط على القاسم المشترك.
خطوة 2
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
بسّط المتغير المستقل للنهاية.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.2.2
اضرب في .
خطوة 3
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 3.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.1.2.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.1.2.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.1.2.3.2
اطرح من .
خطوة 3.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.1.3.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 3.1.3.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.1.3.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.1.3.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.1.3.5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.5.1
اضرب في .
خطوة 3.1.3.5.2
اضرب في .
خطوة 3.1.3.5.3
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 3.1.3.5.4
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 3.1.3.5.5
القيمة الدقيقة لـ هي .
خطوة 3.1.3.5.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 3.1.3.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 3.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 3.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4.3
اضرب في .
خطوة 3.3.5
اطرح من .
خطوة 3.3.6
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.3.7
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.7.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.7.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.7.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.8
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.10
اضرب في .
خطوة 3.3.11
انقُل إلى يسار .
خطوة 3.3.12
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.13
اضرب في .
خطوة 3.3.14
أعِد ترتيب الحدود.
خطوة 4
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 4.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.5
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 4.6
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 4.7
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.8
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 4.9
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 6
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
انقُل السالب أمام الكسر.
خطوة 6.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
اضرب في .
خطوة 6.2.3
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 6.2.4
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 6.2.5
القيمة الدقيقة لـ هي .
خطوة 6.2.6
اضرب في .
خطوة 6.2.7
اضرب في .
خطوة 6.2.8
اضرب في .
خطوة 6.2.9
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 6.2.10
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 6.2.11
القيمة الدقيقة لـ هي .
خطوة 6.2.12
أضف و.
خطوة 6.3
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
اضرب في .
خطوة 6.4.2
اضرب في .
خطوة 6.4.3
ارفع إلى القوة .
خطوة 6.4.4
ارفع إلى القوة .
خطوة 6.4.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6.4.6
أضف و.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: