حساب التفاضل والتكامل الأمثلة

أوجد المساحة بين المنحنيات x-2y=-5 , x^2+y^2=25
,
خطوة 1
أوجِد الحل بالتعويض لإيجاد التقاطع بين المنحنيين.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أضف إلى كلا المتعادلين.
خطوة 1.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.2.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 1.2.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 1.2.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1.3.1.1
اضرب في .
خطوة 1.2.2.1.1.3.1.2
اضرب في .
خطوة 1.2.2.1.1.3.1.3
اضرب في .
خطوة 1.2.2.1.1.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2.2.1.1.3.1.5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1.3.1.5.1
انقُل .
خطوة 1.2.2.1.1.3.1.5.2
اضرب في .
خطوة 1.2.2.1.1.3.1.6
اضرب في .
خطوة 1.2.2.1.1.3.2
اطرح من .
خطوة 1.2.2.1.2
أضف و.
خطوة 1.3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اطرح من كلا المتعادلين.
خطوة 1.3.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
اطرح من .
خطوة 1.3.2.2
أضف و.
خطوة 1.3.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
أعِد ترتيب و.
خطوة 1.3.3.2
أخرِج العامل من .
خطوة 1.3.3.3
أخرِج العامل من .
خطوة 1.3.3.4
أخرِج العامل من .
خطوة 1.3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.3.5
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.3.6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.2.1
اطرح من كلا المتعادلين.
خطوة 1.3.6.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.2.2.1
اقسِم كل حد في على .
خطوة 1.3.6.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 1.3.6.2.2.2.2
اقسِم على .
خطوة 1.3.6.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.2.2.3.1
اقسِم على .
خطوة 1.3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1.1
اضرب في .
خطوة 1.4.2.1.2
أضف و.
خطوة 1.5
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.5.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1.1
اضرب في .
خطوة 1.5.2.1.2
أضف و.
خطوة 1.6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 2
أضف إلى كلا المتعادلين.
خطوة 3
أوجِد حل بمعلومية .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أعِد كتابة بالصيغة .
خطوة 3.3.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
تُعرَّف مساحة المنطقة المحصورة بين منحنيين بأنها تكامل المنحنى العلوي مطروحًا منه تكامل المنحنى السفلي على كل منطقة. وتُحدد المناطق بنقاط تقاطع المنحنيات. ويمكن القيام بذلك جبريًا أو بيانيًا.
خطوة 5
أوجِد التكامل لإيجاد المساحة بين و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اجمع التكاملات في تكامل واحد.
خطوة 5.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
طبّق خاصية التوزيع.
خطوة 5.2.2
اضرب في .
خطوة 5.2.3
اضرب في .
خطوة 5.3
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5.4
أكمِل المربع.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.1.1
طبّق خاصية التوزيع.
خطوة 5.4.1.1.2
طبّق خاصية التوزيع.
خطوة 5.4.1.1.3
طبّق خاصية التوزيع.
خطوة 5.4.1.2
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.2.1.1
اضرب في .
خطوة 5.4.1.2.1.2
اضرب في .
خطوة 5.4.1.2.1.3
انقُل إلى يسار .
خطوة 5.4.1.2.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.4.1.2.1.5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.2.1.5.1
انقُل .
خطوة 5.4.1.2.1.5.2
اضرب في .
خطوة 5.4.1.2.2
أضف و.
خطوة 5.4.1.2.3
أضف و.
خطوة 5.4.1.3
أعِد ترتيب و.
خطوة 5.4.2
استخدِم الصيغة لإيجاد قيم و و.
خطوة 5.4.3
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 5.4.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.4.1
عوّض بقيمتَي و في القاعدة .
خطوة 5.4.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.4.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.4.2.1.1
أخرِج العامل من .
خطوة 5.4.4.2.1.2
انقُل العدد سالب واحد من قاسم .
خطوة 5.4.4.2.2
أعِد كتابة بالصيغة .
خطوة 5.4.4.2.3
اضرب في .
خطوة 5.4.5
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.5.1
عوّض بقيم و و في القاعدة .
خطوة 5.4.5.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.5.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 5.4.5.2.1.2
اضرب في .
خطوة 5.4.5.2.1.3
اقسِم على .
خطوة 5.4.5.2.1.4
اضرب في .
خطوة 5.4.5.2.2
أضف و.
خطوة 5.4.6
عوّض بقيم و و في شكل الرأس .
خطوة 5.5
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.1
أوجِد مشتقة .
خطوة 5.5.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.5.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.5.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.5.1.5
أضف و.
خطوة 5.5.2
عوّض بالنهاية الدنيا عن في .
خطوة 5.5.3
أضف و.
خطوة 5.5.4
عوّض بالنهاية العليا عن في .
خطوة 5.5.5
أضف و.
خطوة 5.5.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 5.5.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 5.6
لنفترض أن ، حيث . إذن . لاحظ أنه نظرًا إلى أن ، إذن تُعد موجبة.
خطوة 5.7
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 5.7.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.7.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.7.1.1.1
طبّق قاعدة الضرب على .
خطوة 5.7.1.1.2
ارفع إلى القوة .
خطوة 5.7.1.1.3
اضرب في .
خطوة 5.7.1.2
أعِد ترتيب و.
خطوة 5.7.1.3
أخرِج العامل من .
خطوة 5.7.1.4
أخرِج العامل من .
خطوة 5.7.1.5
أخرِج العامل من .
خطوة 5.7.1.6
طبّق متطابقة فيثاغورس.
خطوة 5.7.1.7
أعِد كتابة بالصيغة .
خطوة 5.7.1.8
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 5.7.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.7.2.1
اضرب في .
خطوة 5.7.2.2
ارفع إلى القوة .
خطوة 5.7.2.3
ارفع إلى القوة .
خطوة 5.7.2.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.7.2.5
أضف و.
خطوة 5.8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.9
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 5.10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.11
اجمع و.
خطوة 5.12
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5.13
طبّق قاعدة الثابت.
خطوة 5.14
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 5.14.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 5.14.1.1
أوجِد مشتقة .
خطوة 5.14.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.14.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.14.1.4
اضرب في .
خطوة 5.14.2
عوّض بالنهاية الدنيا عن في .
خطوة 5.14.3
اضرب في .
خطوة 5.14.4
عوّض بالنهاية العليا عن في .
خطوة 5.14.5
اضرب في .
خطوة 5.14.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 5.14.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 5.15
اجمع و.
خطوة 5.16
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.17
تكامل بالنسبة إلى هو .
خطوة 5.18
طبّق قاعدة الثابت.
خطوة 5.19
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.20
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5.21
اجمع و.
خطوة 5.22
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.22.1
احسِب قيمة في وفي .
خطوة 5.22.2
احسِب قيمة في وفي .
خطوة 5.22.3
احسِب قيمة في وفي .
خطوة 5.22.4
احسِب قيمة في وفي .
خطوة 5.22.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.22.5.1
أضف و.
خطوة 5.22.5.2
اضرب في .
خطوة 5.22.5.3
اضرب في .
خطوة 5.22.5.4
أضف و.
خطوة 5.22.5.5
ارفع إلى القوة .
خطوة 5.22.5.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.22.5.6.1
أخرِج العامل من .
خطوة 5.22.5.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.22.5.6.2.1
أخرِج العامل من .
خطوة 5.22.5.6.2.2
ألغِ العامل المشترك.
خطوة 5.22.5.6.2.3
أعِد كتابة العبارة.
خطوة 5.22.5.6.2.4
اقسِم على .
خطوة 5.22.5.7
ينتج عن رفع إلى أي قوة موجبة.
خطوة 5.22.5.8
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.22.5.8.1
أخرِج العامل من .
خطوة 5.22.5.8.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.22.5.8.2.1
أخرِج العامل من .
خطوة 5.22.5.8.2.2
ألغِ العامل المشترك.
خطوة 5.22.5.8.2.3
أعِد كتابة العبارة.
خطوة 5.22.5.8.2.4
اقسِم على .
خطوة 5.22.5.9
اضرب في .
خطوة 5.22.5.10
أضف و.
خطوة 5.22.5.11
اضرب في .
خطوة 5.22.5.12
اطرح من .
خطوة 5.23
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.23.1
القيمة الدقيقة لـ هي .
خطوة 5.23.2
اضرب في .
خطوة 5.23.3
أضف و.
خطوة 5.23.4
اجمع و.
خطوة 5.23.5
أضف و.
خطوة 5.23.6
اجمع و.
خطوة 5.23.7
اضرب في .
خطوة 5.23.8
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.23.9
اجمع و.
خطوة 5.23.10
اجمع البسوط على القاسم المشترك.
خطوة 5.23.11
اضرب في .
خطوة 5.23.12
أضف و.
خطوة 5.24
اقسِم على .
خطوة 6