حساب التفاضل والتكامل الأمثلة

أوجد المساحة بين المنحنيات y=sin(x) , x=0 , x=pi
, ,
خطوة 1
أوجِد الحل بالتعويض لإيجاد التقاطع بين المنحنيين.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احذِف المتعادلين المتساويين في كل معادلة واجمع.
خطوة 1.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 1.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
القيمة الدقيقة لـ هي .
خطوة 1.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 1.2.4
اطرح من .
خطوة 1.2.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 1.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 1.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 1.2.5.4
اقسِم على .
خطوة 1.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 1.2.7
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 1.3
عوّض بقيمة التي تساوي .
خطوة 1.4
اسرِد جميع الحلول.
خطوة 2
تُعرَّف مساحة المنطقة المحصورة بين منحنيين بأنها تكامل المنحنى العلوي مطروحًا منه تكامل المنحنى السفلي على كل منطقة. وتُحدد المناطق بنقاط تقاطع المنحنيات. ويمكن القيام بذلك جبريًا أو بيانيًا.
خطوة 3
أوجِد التكامل لإيجاد المساحة بين و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اجمع التكاملات في تكامل واحد.
خطوة 3.2
اطرح من .
خطوة 3.3
تكامل بالنسبة إلى هو .
خطوة 3.4
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
احسِب قيمة في وفي .
خطوة 3.4.2
القيمة الدقيقة لـ هي .
خطوة 3.4.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.3.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 3.4.3.2
القيمة الدقيقة لـ هي .
خطوة 3.4.3.3
اضرب في .
خطوة 3.4.3.4
اضرب في .
خطوة 3.4.3.5
أضف و.
خطوة 4