حساب التفاضل والتكامل الأمثلة

أوجد خط المماس عند نقطة y=(5x)/(x-3) , (4,20)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2
اضرب في .
خطوة 1.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.1
أضف و.
خطوة 1.3.6.2
اضرب في .
خطوة 1.3.6.3
اطرح من .
خطوة 1.3.6.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.4.1
اطرح من .
خطوة 1.3.6.4.2
انقُل السالب أمام الكسر.
خطوة 1.3.6.4.3
اضرب في .
خطوة 1.3.6.5
اجمع و.
خطوة 1.3.6.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.6.1
اضرب في .
خطوة 1.3.6.6.2
انقُل السالب أمام الكسر.
خطوة 1.4
احسِب قيمة المشتق في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1.1
اطرح من .
خطوة 1.5.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.5.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1
اقسِم على .
خطوة 1.5.2.2
اضرب في .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بجمع الأصفار.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.1.4
اضرب في .
خطوة 2.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
أضف و.
خطوة 3