إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أوجِد مشتقة المتعادلين.
خطوة 1.2
أوجِد مشتقة المتعادل الأيسر.
خطوة 1.2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.2
أعِد كتابة بالصيغة .
خطوة 1.3
أوجِد مشتقة المتعادل الأيمن.
خطوة 1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
احسِب قيمة .
خطوة 1.3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2.3
اضرب في .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.3.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3.2
أضف و.
خطوة 1.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 1.5
اقسِم كل حد في على وبسّط.
خطوة 1.5.1
اقسِم كل حد في على .
خطوة 1.5.2
بسّط الطرف الأيسر.
خطوة 1.5.2.1
ألغِ العامل المشترك لـ .
خطوة 1.5.2.1.1
ألغِ العامل المشترك.
خطوة 1.5.2.1.2
اقسِم على .
خطوة 1.6
استبدِل بـ .
خطوة 1.7
احسِب القيمة عند و.
خطوة 1.7.1
استبدِل المتغير بـ في العبارة.
خطوة 1.7.2
استبدِل المتغير بـ في العبارة.
خطوة 1.7.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.7.4
بسّط القاسم.
خطوة 1.7.4.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 1.7.4.2
القيمة الدقيقة لـ هي .
خطوة 1.7.4.3
اضرب في .
خطوة 1.7.5
بسّط العبارة.
خطوة 1.7.5.1
اضرب في .
خطوة 1.7.5.2
اقسِم على .
خطوة 2
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
بسّط .
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بجمع الأصفار.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.1.4
اضرب في .
خطوة 2.3.2
أضف إلى كلا المتعادلين.
خطوة 3