حساب التفاضل والتكامل الأمثلة

أوجد خط المماس عند نقطة y=sin(7x)+sin(7x)^2 , (0,0)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.4
اضرب في .
خطوة 1.2.5
انقُل إلى يسار .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
اضرب في .
خطوة 1.3.6
انقُل إلى يسار .
خطوة 1.3.7
اضرب في .
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 1.5
احسِب قيمة المشتق في .
خطوة 1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1.1
اضرب في .
خطوة 1.6.1.2
القيمة الدقيقة لـ هي .
خطوة 1.6.1.3
اضرب في .
خطوة 1.6.1.4
اضرب في .
خطوة 1.6.1.5
القيمة الدقيقة لـ هي .
خطوة 1.6.1.6
اضرب في .
خطوة 1.6.1.7
اضرب في .
خطوة 1.6.1.8
القيمة الدقيقة لـ هي .
خطوة 1.6.1.9
اضرب في .
خطوة 1.6.2
أضف و.
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أضف و.
خطوة 2.3.2
أضف و.
خطوة 3