حساب التفاضل والتكامل الأمثلة

الرسم البياني اللوغاريتم الطبيعي للجذر التربيعي لـ x+1
خطوة 1
أوجِد نطاق بحيث يمكن انتقاء قائمة قيم لإيجاد قائمة النقاط، والتي ستساعد في رسم الدالة الجذرية بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
لحذف الجذر في الطرف الأيسر للمتباينة، ربّع كلا طرفي المتباينة.
خطوة 1.2.2
بسّط كل طرف من طرفي المتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
استخدِم لكتابة في صورة .
خطوة 1.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.2.2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 1.2.2.2.1.2
بسّط.
خطوة 1.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.2.3
اطرح من كلا طرفي المتباينة.
خطوة 1.2.4
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2.4.2
اطرح من كلا طرفي المتباينة.
خطوة 1.2.4.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 1.2.5
يتكون الحل من جميع الفترات الصحيحة.
خطوة 1.3
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.4
اطرح من كلا طرفي المتباينة.
خطوة 1.5
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
لإيجاد نقطة نهاية العبارة الجذرية، عوّض بقيمة التي تساوي ، وهي أدنى قيمة في النطاق، في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
أضف و.
خطوة 2.3
أعِد كتابة بالصيغة .
خطوة 2.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.5
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
خطوة 3
نقطة نهاية العبارة الجذرية هي .
خطوة 4
حدد بضع قيم من النطاق. سيكون من المفيد أكثر تحديد القيم بحيث تكون مجاورة لقيمة لنقطة نهاية العبارة الجذرية.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
أضف و.
خطوة 4.1.2.2
أي جذر لـ هو .
خطوة 4.1.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 4.1.2.4
الإجابة النهائية هي .
خطوة 4.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أضف و.
خطوة 4.2.2.2
الإجابة النهائية هي .
خطوة 4.3
يمكن تمثيل الجذر التربيعي بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 5