إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.3
أوجِد قيمة .
خطوة 1.3.1
حوّل التباين إلى تساوٍ.
خطوة 1.3.2
أوجِد حل المعادلة.
خطوة 1.3.2.1
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 1.3.2.2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 1.3.2.3
أوجِد قيمة .
خطوة 1.3.2.3.1
أعِد كتابة المعادلة في صورة .
خطوة 1.3.2.3.2
أي شيء مرفوع إلى هو .
خطوة 1.3.3
أوجِد نطاق .
خطوة 1.3.3.1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.3.3.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 1.3.4
يتكون الحل من جميع الفترات الصحيحة.
خطوة 1.4
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
بسّط النتيجة.
خطوة 2.2.1
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.2.2
أعِد كتابة بالصيغة .
خطوة 2.2.3
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.2.4
الإجابة النهائية هي .
خطوة 3
نقطة نهاية العبارة الجذرية هي .
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
الإجابة النهائية هي .
خطوة 4.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.2.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2.2
الإجابة النهائية هي .
خطوة 4.3
يمكن تمثيل الجذر التربيعي بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 5