إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.2
بما أن عندما من جهة اليسار و عندما من جهة اليمين، إذن خط تقارب رأسي.
خطوة 1.3
احسِب قيمة لإيجاد خط التقارب الأفقي.
خطوة 1.3.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.3.2
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 1.3.3
اضرب في .
خطوة 1.4
اسرِد خطوط التقارب الأفقية:
خطوة 1.5
لا توجد خطوط تقارب مائلة للدوال اللوغاريتمية والمثلثية.
لا توجد خطوط تقارب مائلة
خطوة 1.6
هذه هي مجموعة جميع خطوط التقارب.
خطوط التقارب الرأسية:
خطوط التقارب الأفقية:
خطوط التقارب الرأسية:
خطوط التقارب الأفقية:
خطوة 2
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
بسّط النتيجة.
خطوة 2.2.1
أضف و.
خطوة 2.2.2
الإجابة النهائية هي .
خطوة 2.3
حوّل إلى رقم عشري.
خطوة 3
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
خطوة 3.2.1
أضف و.
خطوة 3.2.2
الإجابة النهائية هي .
خطوة 3.3
حوّل إلى رقم عشري.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
أضف و.
خطوة 4.2.2
أعِد كتابة بالصيغة .
خطوة 4.2.3
وسّع بنقل خارج اللوغاريتم.
خطوة 4.2.4
احذِف العامل المشترك لـ و.
خطوة 4.2.4.1
أخرِج العامل من .
خطوة 4.2.4.2
ألغِ العوامل المشتركة.
خطوة 4.2.4.2.1
أخرِج العامل من .
خطوة 4.2.4.2.2
ألغِ العامل المشترك.
خطوة 4.2.4.2.3
أعِد كتابة العبارة.
خطوة 4.2.5
الإجابة النهائية هي .
خطوة 4.3
حوّل إلى رقم عشري.
خطوة 5
يمكن تمثيل دالة اللوغاريتم بيانيًا باستخدام خط التقارب الرأسي عند والنقاط .
خط التقارب الرأسي:
خطوة 6