إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 1.2
بسّط بالضرب.
خطوة 1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2
أعِد الترتيب.
خطوة 1.2.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2.2.2
انقُل إلى يسار .
خطوة 1.3
اضرب في بجمع الأُسس.
خطوة 1.3.1
انقُل .
خطوة 1.3.2
اضرب في .
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
حلّل إلى عوامل بالتجميع.
خطوة 3.3.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
أعِد كتابة في صورة زائد
خطوة 3.3.1.3
طبّق خاصية التوزيع.
خطوة 3.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3.2.1
جمّع أول حدين وآخر حدين.
خطوة 3.3.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
أوجِد قيمة في .
خطوة 3.5.2.1
اطرح من كلا المتعادلين.
خطوة 3.5.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.5.2.2.1
اقسِم كل حد في على .
خطوة 3.5.2.2.2
بسّط الطرف الأيسر.
خطوة 3.5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.5.2.2.2.1.2
اقسِم على .
خطوة 3.5.2.2.3
بسّط الطرف الأيمن.
خطوة 3.5.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أضف إلى كلا المتعادلين.
خطوة 3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبعِد الحلول التي لا تجعل صحيحة.