إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
مشتق بالنسبة إلى يساوي .
خطوة 2
خطوة 2.1
أعِد كتابة بالصيغة .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 3
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2
أوجِد المشتقة.
خطوة 3.2.1
أعِد كتابة بالصيغة .
خطوة 3.2.2
اضرب الأُسس في .
خطوة 3.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.2.2
اضرب في .
خطوة 3.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.4
اضرب في .
خطوة 3.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.6
بسّط العبارة.
خطوة 3.2.6.1
اضرب في .
خطوة 3.2.6.2
أضف و.
خطوة 3.3
بسّط.
خطوة 3.3.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 3.3.2
اجمع و.
خطوة 4
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
طبّق القواعد الأساسية للأُسس.
خطوة 4.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2
اضرب الأُسس في .
خطوة 4.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2.2
اضرب في .
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.4
اضرب في .
خطوة 4.5
بسّط.
خطوة 4.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 4.5.2
جمّع الحدود.
خطوة 4.5.2.1
اجمع و.
خطوة 4.5.2.2
انقُل السالب أمام الكسر.
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .