حساب التفاضل والتكامل الأمثلة

Resolver para x ((x+3)^2)/64-((y+1)^2)/36=1
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اجمع في كسر واحد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 2.1.2
اجمع البسوط على القاسم المشترك.
خطوة 2.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
طبّق خاصية التوزيع.
خطوة 2.2.2.2
طبّق خاصية التوزيع.
خطوة 2.2.2.3
طبّق خاصية التوزيع.
خطوة 2.2.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.1
اضرب في .
خطوة 2.2.3.1.2
اضرب في .
خطوة 2.2.3.1.3
اضرب في .
خطوة 2.2.3.1.4
اضرب في .
خطوة 2.2.3.2
أضف و.
خطوة 2.2.4
أضف و.
خطوة 3
اضرب كلا المتعادلين في .
خطوة 4
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1
ألغِ العامل المشترك.
خطوة 4.1.1.2
أعِد كتابة العبارة.
خطوة 4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
أخرِج العامل من .
خطوة 4.2.1.1.2
أخرِج العامل من .
خطوة 4.2.1.1.3
ألغِ العامل المشترك.
خطوة 4.2.1.1.4
أعِد كتابة العبارة.
خطوة 4.2.1.2
اجمع و.
خطوة 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 6
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أخرِج عامل القوة الكاملة من .
خطوة 6.1.2
أخرِج عامل القوة الكاملة من .
خطوة 6.1.3
أعِد ترتيب الكسر .
خطوة 6.2
أخرِج الحدود من تحت الجذر.
خطوة 6.3
ارفع إلى القوة .
خطوة 6.4
اجمع و.
خطوة 7
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 7.2
اطرح من كلا المتعادلين.
خطوة 7.3
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 7.4
اطرح من كلا المتعادلين.
خطوة 7.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.