حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة باستخدام قاعدة الجمع.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2
اضرب في .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
أضف و.
خطوة 4.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.5
اضرب في .
خطوة 4.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.7
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.1
اضرب في .
خطوة 4.7.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.7.2.1
أخرِج العامل من .
خطوة 4.7.2.2
أخرِج العامل من .
خطوة 4.7.2.3
أخرِج العامل من .
خطوة 5
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أخرِج العامل من .
خطوة 5.2
ألغِ العامل المشترك.
خطوة 5.3
أعِد كتابة العبارة.
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
طبّق خاصية التوزيع.
خطوة 6.2
طبّق خاصية التوزيع.
خطوة 6.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1
انقُل إلى يسار .
خطوة 6.3.1.2
أعِد كتابة بالصيغة .
خطوة 6.3.1.3
اضرب في .
خطوة 6.3.1.4
اضرب في .
خطوة 6.3.2
أضف و.
خطوة 6.4
أعِد ترتيب الحدود.
خطوة 6.5
أعِد ترتيب العوامل في .