إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5
اضرب في .
خطوة 2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.7
أضف و.
خطوة 2.8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.11
بسّط العبارة.
خطوة 2.11.1
أضف و.
خطوة 2.11.2
اضرب في .
خطوة 3
خطوة 3.1
طبّق خاصية التوزيع.
خطوة 3.2
بسّط بَسْط الكسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.2.1.1.1
طبّق خاصية التوزيع.
خطوة 3.2.1.1.2
طبّق خاصية التوزيع.
خطوة 3.2.1.1.3
طبّق خاصية التوزيع.
خطوة 3.2.1.2
بسّط ووحّد الحدود المتشابهة.
خطوة 3.2.1.2.1
بسّط كل حد.
خطوة 3.2.1.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.2.1.2
اضرب في بجمع الأُسس.
خطوة 3.2.1.2.1.2.1
انقُل .
خطوة 3.2.1.2.1.2.2
اضرب في .
خطوة 3.2.1.2.1.3
انقُل إلى يسار .
خطوة 3.2.1.2.1.4
أعِد كتابة بالصيغة .
خطوة 3.2.1.2.1.5
اضرب في .
خطوة 3.2.1.2.1.6
اضرب في .
خطوة 3.2.1.2.2
اطرح من .
خطوة 3.2.1.3
اضرب .
خطوة 3.2.1.3.1
اضرب في .
خطوة 3.2.1.3.2
اضرب في .
خطوة 3.2.1.4
اضرب في .
خطوة 3.2.2
اطرح من .
خطوة 3.2.3
أضف و.
خطوة 3.2.4
أضف و.
خطوة 3.3
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 3.3.1
أعِد كتابة بالصيغة .
خطوة 3.3.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 3.3.3
أعِد كتابة متعدد الحدود.
خطوة 3.3.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 3.4
ألغِ العامل المشترك لـ .
خطوة 3.4.1
ألغِ العامل المشترك.
خطوة 3.4.2
أعِد كتابة العبارة.