حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dt y(t)=c/(b-a)*(e^(-at)-e^(-bt))
خطوة 1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
اضرب في .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4.3
استبدِل كافة حالات حدوث بـ .
خطوة 5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.2
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
اضرب في .
خطوة 5.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.4
اضرب في .
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد ترتيب عوامل .
خطوة 6.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 6.3
اضرب في .
خطوة 6.4
أخرِج العامل من .
خطوة 6.5
أخرِج العامل من .
خطوة 6.6
أخرِج العامل من .
خطوة 6.7
أعِد كتابة بالصيغة .
خطوة 6.8
انقُل السالب أمام الكسر.
خطوة 6.9
أعِد ترتيب العوامل في .