حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
أعِد كتابة بالصيغة .
خطوة 3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اضرب في .
خطوة 4.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
أضف و.
خطوة 4.5.2
انقُل إلى يسار .
خطوة 4.5.3
اضرب في .
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 5.2
طبّق قاعدة الضرب على .
خطوة 5.3
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.3.2
اجمع و.
خطوة 5.3.3
انقُل السالب أمام الكسر.
خطوة 5.3.4
اجمع و.
خطوة 5.3.5
اضرب في .
خطوة 5.3.6
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.6.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.3.6.2
أضف و.
خطوة 5.3.7
انقُل إلى يسار .
خطوة 5.4
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
أعِد كتابة بالصيغة .
خطوة 5.4.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 5.4.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.3.1
اضرب في .
خطوة 5.4.3.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 5.4.4
طبّق قاعدة الضرب على .