حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب في .
خطوة 3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
أضف و.
خطوة 3.6.2
اضرب في .
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
أعِد ترتيب العوامل في .
خطوة 4.3
أعِد ترتيب الحدود.
خطوة 4.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1.1
أخرِج العامل من .
خطوة 4.4.1.2
أخرِج العامل من .
خطوة 4.4.1.3
أخرِج العامل من .
خطوة 4.4.1.4
أخرِج العامل من .
خطوة 4.4.1.5
أخرِج العامل من .
خطوة 4.4.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1
أعِد كتابة بالصيغة .
خطوة 4.4.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 4.4.2.3
أعِد كتابة متعدد الحدود.
خطوة 4.4.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 4.5
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1.1
أخرِج العامل من .
خطوة 4.5.1.2
أخرِج العامل من .
خطوة 4.5.1.3
أخرِج العامل من .
خطوة 4.5.2
طبّق قاعدة الضرب على .
خطوة 4.5.3
ارفع إلى القوة .
خطوة 4.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
أخرِج العامل من .
خطوة 4.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.6.2.1
أخرِج العامل من .
خطوة 4.6.2.2
ألغِ العامل المشترك.
خطوة 4.6.2.3
أعِد كتابة العبارة.