حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أضف و.
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6
اضرب في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد ترتيب عوامل .
خطوة 3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أخرِج السالب.
خطوة 3.2.2
أعِد كتابة بالصيغة .
خطوة 3.2.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.3.2
طبّق خاصية التوزيع.
خطوة 3.2.3.3
اضرب في .
خطوة 3.2.3.4
اضرب في .
خطوة 3.2.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.2.5
أضف و.
خطوة 3.3
أعِد ترتيب العوامل في .