إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
خطوة 3.1
اجمع و.
خطوة 3.2
بسّط الحدود.
خطوة 3.2.1
اضرب في .
خطوة 3.2.2
اجمع و.
خطوة 3.2.3
انقُل إلى يسار .
خطوة 3.2.4
احذِف العامل المشترك لـ و.
خطوة 3.2.4.1
أخرِج العامل من .
خطوة 3.2.4.2
ألغِ العوامل المشتركة.
خطوة 3.2.4.2.1
أخرِج العامل من .
خطوة 3.2.4.2.2
ألغِ العامل المشترك.
خطوة 3.2.4.2.3
أعِد كتابة العبارة.
خطوة 3.2.4.2.4
اقسِم على .
خطوة 3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
اضرب في .
خطوة 3.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.9
اضرب في .
خطوة 3.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.11
أضف و.