حساب التفاضل والتكامل الأمثلة

خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2
اضرب في .
خطوة 4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2
مشتق بالنسبة إلى يساوي .
خطوة 4.3
استبدِل كافة حالات حدوث بـ .
خطوة 5
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اضرب في .
خطوة 5.2
أخرِج العامل من .
خطوة 5.3
أخرِج العامل من .
خطوة 6
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أخرِج العامل من .
خطوة 6.2
ألغِ العامل المشترك.
خطوة 6.3
أعِد كتابة العبارة.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8
اضرب في .
خطوة 9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 10
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
اضرب في .
خطوة 10.2
اجمع و.
خطوة 11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
طبّق خاصية التوزيع.
خطوة 11.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
اضرب في .
خطوة 11.2.2
اضرب في .
خطوة 11.3
أعِد ترتيب الحدود.