حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx 2arccos( الجذر التربيعي لـ x)
خطوة 1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم لكتابة في صورة .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
ألغِ العامل المشترك.
خطوة 3.2.2
أعِد كتابة العبارة.
خطوة 4
بسّط.
خطوة 5
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اضرب في .
خطوة 5.2
اجمع و.
خطوة 5.3
انقُل السالب أمام الكسر.
خطوة 6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 7
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 8
اجمع و.
خطوة 9
اجمع البسوط على القاسم المشترك.
خطوة 10
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
اضرب في .
خطوة 10.2
اطرح من .
خطوة 11
انقُل السالب أمام الكسر.
خطوة 12
اجمع و.
خطوة 13
اضرب في .
خطوة 14
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 14.1
انقُل إلى يسار .
خطوة 14.2
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 15
ألغِ العامل المشترك.
خطوة 16
أعِد كتابة العبارة.