إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أعِد كتابة بالصيغة .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.7
أضف و.
خطوة 2.8
اضرب في .
خطوة 2.9
اضرب في .
خطوة 3
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.7
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.8
اجمع و.
خطوة 3.9
اجمع البسوط على القاسم المشترك.
خطوة 3.10
بسّط بَسْط الكسر.
خطوة 3.10.1
اضرب في .
خطوة 3.10.2
اطرح من .
خطوة 3.11
انقُل السالب أمام الكسر.
خطوة 3.12
أضف و.
خطوة 3.13
اجمع و.
خطوة 3.14
اضرب في .
خطوة 3.15
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 4
خطوة 4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 4.2
جمّع الحدود.
خطوة 4.2.1
اجمع و.
خطوة 4.2.2
انقُل السالب أمام الكسر.