حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة f(x) = square root of x^2+9
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
استخدِم لكتابة في صورة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.4
اجمع و.
خطوة 1.1.5
اجمع البسوط على القاسم المشترك.
خطوة 1.1.6
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1
اضرب في .
خطوة 1.1.6.2
اطرح من .
خطوة 1.1.7
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.7.1
انقُل السالب أمام الكسر.
خطوة 1.1.7.2
اجمع و.
خطوة 1.1.7.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.11
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.11.1
أضف و.
خطوة 1.1.11.2
اجمع و.
خطوة 1.1.11.3
اجمع و.
خطوة 1.1.11.4
ألغِ العامل المشترك.
خطوة 1.1.11.5
أعِد كتابة العبارة.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.2
أضف و.
خطوة 4.1.2.3
أعِد كتابة بالصيغة .
خطوة 4.1.2.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.2
اسرِد جميع النقاط.
خطوة 5