حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف f(x)=3x^4-16x^3+18x^2
خطوة 1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4.3
اضرب في .
خطوة 1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2.3
اضرب في .
خطوة 1.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3.3
اضرب في .
خطوة 1.2.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.4.3
اضرب في .
خطوة 1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل من .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.2.4
أخرِج العامل من .
خطوة 2.2.5
أخرِج العامل من .
خطوة 2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
اقسِم على .
خطوة 2.4
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.5
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.1
ارفع إلى القوة .
خطوة 2.6.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.2.1
اضرب في .
خطوة 2.6.1.2.2
اضرب في .
خطوة 2.6.1.3
اطرح من .
خطوة 2.6.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.4.1
أخرِج العامل من .
خطوة 2.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.6.2
اضرب في .
خطوة 2.6.3
بسّط .
خطوة 2.7
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1.1
ارفع إلى القوة .
خطوة 2.7.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1.2.1
اضرب في .
خطوة 2.7.1.2.2
اضرب في .
خطوة 2.7.1.3
اطرح من .
خطوة 2.7.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1.4.1
أخرِج العامل من .
خطوة 2.7.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.7.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.7.2
اضرب في .
خطوة 2.7.3
بسّط .
خطوة 2.7.4
غيّر إلى .
خطوة 2.8
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 2.8.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.8.1.1
ارفع إلى القوة .
خطوة 2.8.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.8.1.2.1
اضرب في .
خطوة 2.8.1.2.2
اضرب في .
خطوة 2.8.1.3
اطرح من .
خطوة 2.8.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.8.1.4.1
أخرِج العامل من .
خطوة 2.8.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.8.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.8.2
اضرب في .
خطوة 2.8.3
بسّط .
خطوة 2.8.4
غيّر إلى .
خطوة 2.9
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 3
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
استبدِل المتغير بـ في العبارة.
خطوة 3.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1.1
ارفع إلى القوة .
خطوة 3.1.2.1.2
اضرب في .
خطوة 3.1.2.1.3
ارفع إلى القوة .
خطوة 3.1.2.1.4
اضرب في .
خطوة 3.1.2.1.5
ارفع إلى القوة .
خطوة 3.1.2.1.6
اضرب في .
خطوة 3.1.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.2.1
اطرح من .
خطوة 3.1.2.2.2
أضف و.
خطوة 3.1.2.3
الإجابة النهائية هي .
خطوة 3.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 3.3
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
ارفع إلى القوة .
خطوة 3.3.2.1.2
اضرب في .
خطوة 3.3.2.1.3
ارفع إلى القوة .
خطوة 3.3.2.1.4
اضرب في .
خطوة 3.3.2.1.5
ارفع إلى القوة .
خطوة 3.3.2.1.6
اضرب في .
خطوة 3.3.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1
اطرح من .
خطوة 3.3.2.2.2
أضف و.
خطوة 3.3.2.3
الإجابة النهائية هي .
خطوة 3.4
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 3.5
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
خطوة 4
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 5
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اطرح من .
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اطرح من .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اطرح من .
خطوة 7.2.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
خطوة 9