إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
أضف و.
خطوة 2.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.8
أضف و.
خطوة 3
خطوة 3.1
طبّق خاصية التوزيع.
خطوة 3.2
طبّق خاصية التوزيع.
خطوة 3.3
طبّق خاصية التوزيع.
خطوة 3.4
بسّط بَسْط الكسر.
خطوة 3.4.1
بسّط كل حد.
خطوة 3.4.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4.1.2
اضرب في بجمع الأُسس.
خطوة 3.4.1.2.1
انقُل .
خطوة 3.4.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.1.2.3
أضف و.
خطوة 3.4.1.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4.1.5
اضرب في بجمع الأُسس.
خطوة 3.4.1.5.1
انقُل .
خطوة 3.4.1.5.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.1.5.3
أضف و.
خطوة 3.4.1.6
اضرب في .
خطوة 3.4.1.7
اضرب في .
خطوة 3.4.1.8
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4.1.9
اضرب في .
خطوة 3.4.2
اطرح من .
خطوة 3.5
أعِد ترتيب الحدود.
خطوة 3.6
أخرِج العامل من .
خطوة 3.6.1
أخرِج العامل من .
خطوة 3.6.2
أخرِج العامل من .
خطوة 3.6.3
أخرِج العامل من .
خطوة 3.6.4
أخرِج العامل من .
خطوة 3.6.5
أخرِج العامل من .
خطوة 3.7
أخرِج العامل من .
خطوة 3.8
أخرِج العامل من .
خطوة 3.9
أخرِج العامل من .
خطوة 3.10
أخرِج العامل من .
خطوة 3.11
أخرِج العامل من .
خطوة 3.12
أعِد كتابة بالصيغة .
خطوة 3.13
انقُل السالب أمام الكسر.