إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 1.2
أوجِد حل المعادلة.
خطوة 1.2.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 1.2.2.1
أخرِج العامل من .
خطوة 1.2.2.1.1
أعِد ترتيب و.
خطوة 1.2.2.1.2
أخرِج العامل من .
خطوة 1.2.2.1.3
أخرِج العامل من .
خطوة 1.2.2.1.4
أخرِج العامل من .
خطوة 1.2.2.1.5
أخرِج العامل من .
خطوة 1.2.2.1.6
أخرِج العامل من .
خطوة 1.2.2.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 1.2.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.2.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 1.2.2.2.3
أعِد كتابة متعدد الحدود.
خطوة 1.2.2.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 1.2.3
اقسِم كل حد في على وبسّط.
خطوة 1.2.3.1
اقسِم كل حد في على .
خطوة 1.2.3.2
بسّط الطرف الأيسر.
خطوة 1.2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2
اقسِم على .
خطوة 1.2.3.3
بسّط الطرف الأيمن.
خطوة 1.2.3.3.1
اقسِم على .
خطوة 1.2.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.5
أضف إلى كلا المتعادلين.
خطوة 1.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور السيني:
خطوة 2
خطوة 2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 2.2
أوجِد حل المعادلة.
خطوة 2.2.1
احذِف الأقواس.
خطوة 2.2.2
احذِف الأقواس.
خطوة 2.2.3
بسّط .
خطوة 2.2.3.1
بسّط كل حد.
خطوة 2.2.3.1.1
اضرب في .
خطوة 2.2.3.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.2.3.1.3
اضرب في .
خطوة 2.2.3.2
بسّط عن طريق الجمع والطرح.
خطوة 2.2.3.2.1
أضف و.
خطوة 2.2.3.2.2
اطرح من .
خطوة 2.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 3
اسرِد التقاطعات.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 4